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heated from below 
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A weakly nonlinear theory is developed for convection in an infinite rigid horizontal 
rectangular channel uniformly heated from below. A combination of analytical and 
numerical techniques along and in the cross-section of the channel leads to the 
derivation of an amplitude equation governing the spatial and temporal evolution of 
the flow above the critical Rayleigh number. Results are obtained for general Prandtl 
numbers and a wide range of aspect ratios. Overall trends are confirmed by 
comparison with results for an idealized model with stress-free horizontal boundaries. 
For wide channels, where the aspect ratio is large, the limiting form of the amplitude 
equation is predicted by reference to the two-dimensional equation describing roll 
patterns in infinite layers. The connection with this well-developed theory is 
established for both rigid and stress-free horizontal boundary conditions. 

1. Introduction 
This paper considers the onset of convection in an infinite rigid horizontal channel 

uniformly heated from below. The study is motivated by the desire to develop 
theoretical predictions of the motion near the onset of convection that can be 
compared with experimental results and are capable of describing initial transitions 
in the pattern of convective rolls. For low-Prandtl-number fluids contained in long 
boxes Buhler, Kirchartz & Oertel (1979) have observed a decrease in the number of 
rolls as the Rayleigh number is increased above its critical value, a behaviour 
confirmed qualitatively by Daniels & Chana (1987) using a simplified theoretical 
model with stress-free horizontal boundaries. The basis of this theoretical model is 
the amplitude equation that describes spatially modulated weakly nonlinear 
convection in an infinite channel. In the present work this equation is derived for the 
physically realistic case of rigid boundaries. It provides important information 
concerning the evolution, amplitude and waveband of stable convective states as a 
function of both the aspect ratio of the channel and the Prandtl number of the fluid. 

The overall description of the flow is semi-analytical, a numerical approach being 
required to solve a succession of partial differential equations that arise in the cross- 
section of the channel. The first of these is the linear eigenvalue problem already 
considered by Luijkx & Platten (1981) for the case of insulating sidewalls and by 
Cham & Daniels (1989) for the case of conducting sidewalls. Galerkin methods were 
used in these studies and in the latter case results for the critical Rayleigh number 
and wavenumber were compared with asymptotic predictions at  large and small 
aspect ratios. Comparisons of the critical wavelength with experiment have been 
made by Luijkx, Platten & Legros (1982). The main findings of the linear stability 
analysis and of experimental and numerical work, including that of Dubois & Berge 
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(1978) and Kessler (1987), confirm the original prediction of Davis (1967) that a t  the 
onset of motion the preferred mode of convection consists of rolls with axes aligned 
perpendicular to the sidewalls of the channel. These rolls are, however, a fully three- 
dimensional motion, with a non-zero velocity component perpendicular to the 
sidewalls. 

The problem is formulated in $2. In  $3  the extension of linearized theory to 
incorporate weakly nonlinear effects in the neighbourhood of the critical Rayleigh 
number is described. The coefficients of an amplitude equation for the spatial and 
temporal evolution of the nonlinear motion are determined in $4 using Galerkin 
representations of the various functions of the cross-channel coordinates. In $5,  
corresponding results for stress-free horizontal surfaces are presented. Here the 
partial differential equations can be reduced to ordinary ones and a ' finite-roll' 
representation allows approximate analytical expressions to be obtained for the 
coefficients of the amplitude equation. The results are particularly relevant at small 
and large aspect ratios where the cross-channel velocity component is small, and 
generally provide useful confirmation of the qualitative behaviour of the solution to 
the fully rigid problem. 

For wide channels, limiting values of the coefficients of the amplitude equation are 
predicted from the known form of the equation governing two-dimensional roll 
patterns in infinite layers. The connection with this well-established theory for the 
infinite layer is not entirely straightforward and is described in $6 for the cases of 
both rigid and stress-free horizontal boundaries. The two cases are not identical. For 
stress-free boundaries the correct form of the amplitude equation for an infinite layer 
was found recently by Siggia & Zippelius (1981) and contains a term associated with 
the generation of vertical vorticity in the layer. This term was omitted in the earlier 
analysis of Newel1 & Whitehead (1969) and does not occur at the same level of 
approximation when the boundaries are rigid. Here it is shown that a t  finite aspect 
ratios the large-scale flow associated with this vertical vorticity is diminished in size 
and ceases to influence the main amplitude equation. A full discussion of the results 
is given in $7.  

2. Formulation 
Fluid is contained in an infinite horizontal rectangular channel Jyl ,< a, 1x1 < t 

where x, y, z are Cartesian coordinates non-dimensionalized with respect to the depth 
of the channel d,  with the x-axis along the centre of the channel. In  the Boussinesq 
approximation the governing equations may be written 

(2.3) 
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where 

Here 8 and p are non-dimensional measures of the temperature 8* and pressure p* 
relative to the static, vertically stratified basic state : 

e* = 8: - Ae*z + Ae*e, (2.7) 

p* = p:-gpozd(l +iaA8*z)+p,KVd-2p. (2.8) 

8: f $A8* are the constant temperatures of the upper and lower surfaces of the 
channel, po is the fluid density a t  the mean temperature O r ,  g is the acceleration due 
to gravity, which acts in the negative z-direction, and a, v and K are the coefficient 
of thermal expansion, kinematic viscosity and thermal diffusivity of the fluid 
respectively. The velocity components u, v, w and time t are non-dimensionalized 
with respect to K / d  and d 2 / ~  and the Rayleigh number R and Prandtl number CT are 
defined by 

R = agA8*d3/~v, CT = V / K .  (2.9) 

For a channel with rigid perfectly conducting walls the boundary conditions at  
y = fa(lz1 6 $) and z = &t(lyl 6 a) are 

u = v  = = 6 = 0, (2.10) 

and since the primary interest is in applications to long totally enclosed boxes the 
volume flux down the channel must vanish, 

Equations (2.1)-(2.5) and (2.10) can be recast in the form 

with 

(2.11) 

(2.12) 

(2.13) 

V28+w = N4, (2.14) 

v = - -  - ~ = 8 = 0  on Y = + u ,  (2.15) 
av 

aY 

on = +r - 2 ’  (2.16) 

This provides a convenient framework within which t o  develop a weakly nonlinear 
theory amenable to a Galerkin representation of the functions v, w and 8. 

3. Weakly nonlinear theory 
Linear theory predicts that there is a critical Rayleigh number R,, which depends 

only on the aspect ratio of the channel, at which the conductive state of no motion 
becomes unstable by an exchange process. For Rayleigh numbers 

R = R,+E,  (3.1) 
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where e is small and positive, the fluid adopts a stationary three-dimensional roll 
pattern which can be found by expanding the solution in the form 

(0,  u, V ,  W>P) = Z e n / 2 ( @ n ,  u n ,  vn, Wn,p)n) (x, Y, ~;X,T). (3.2) 
n-1 

Here X = e b  and 7 = et are long length and time scales which allow for spatial 
modulation of the rolls about the critical wavelength and for a discussion of their 
evolution and stability. 

At leading order 

(01, ul, vlr wl,pl) = (0, iU, V ,  W ,  P )  (y, z )  A ( X ,  T )  eiQcz+ c.c., (3.3) 

where A is an unknown complex amplitude function, C.C. denotes complex conjugate 
and qc is the critical wavenumber of the rolls. From (2.12)-(2.14) 0, V and W are 
eigensolutions of the linearized system 

v2{(&) v+E} = 0, 

9'((&-q2) W + s } - R q 2 0  = 0, 

(3.4) 

(3.5) 

where P2 = (az/ay2) + (a2/i3.z2) -q2, evaluated a t  the minimum point of the neutral 
curve R = R,,q = qc. Solutions of this system for various aspect ratios have been 
obtained by Chana & Daniels (1989) and Daniels & Ong (1990); values of R, and qc 
are included in table 1 below. From (2.1) and (2.2) 

where q = qe. 
At order e the leading contributions to the nonlinear functions 

lLi Ni = e 2 N , ,  
j-1 

together with derivatives in X, generate solutions of the form 

(92,ug,v2,w2,pz) = {(Q,iU 8, W,P)B(X,7)eiqcZ 

(3.10) 

where B is a further unknown complex amplitude function which does not influence 
the equation for A to be determined below and @, 8, Q, 0 etc are real functions of 

+ i( O, i o ,  V ,  W, P )  A eiqcz + (8, i 0, P, fi, P )  A' e2iQcx + c.c. ax 
+ (6,8, f, @,P)  IAI2, 
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y and z. Only those functions associated with the nonlinear terms A2 and IAI2 depend 
on the Prandtl number, with the first set Conveniently expressed as 

(40, v, R F )  = (&, ol, E, @J1) +p2, 02, c, %,F2).  (3.11) 

For the second set it is easily established from (2.2) and the flux constraint (2.11) 
(which implies that a pressure of order & depending only on X and 7 cannot occur) 
that 8 = 0, and the cross-channel flow can be represented by a stream function 4. 
From (2.3) and (2.4) 

- aP = (G+$) P-;(qc uv+ 
aY 

az 

and following the decomposition 

(6, Y) = (& Y 1 ) + p 2 ,  1 Y2) 

(3.12) 

(3.13) 

(3.14) 

and elimination of the pressure between (3.12) and (3;13) a pair of coupled systems, 
independent of the Prandtl number, is obtained for Oi and Y6. The velocity field is 
then determined from 6 = aY8i/az ,  = -aYji/ay and the pressure (to within a 
function of integration depending on X and 7) from (3.12) and (3.13). Further details 
of the determination of the functions of y and z appearing in (3.10) are given in an 
Appendix. 

At order solutions for v3, w3 and 8, contain components proportional to  eiqcx 

where the functions of y and z now satisfy the basic linear system (3.4)-(3.8) but with 
forcing terms x1,2,3 on the right-hand sides of (3.4)-(3.6) respectively. These are 
generated by derivatives in X and 7 as well as nonlinear contributions of order I$ 
arising in Ni. The adjoint triplet associated with the basic linear system for V ,  W ,  0 
a t  the critical point is (V, W, -PERc@) so that the solvability condition is 
conveniently 

v+x2 W-q3cx3@)dydz = 0. (3.15) 

This is automatically satisfied for the second-order system for V ,  W, 6 but a t  this 
third stage the forms of x1,2,3 imply that 

(3.16) 

Formulae for the coefficients ci ,  which depend only on the aspect ratio of the channel, 
are given in the Appendix. 

4. Numerical procedure and results 
The linear eigenfunctions may be represented by Galerkin series 

(4.1) 

FLM 215 17 
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15r *5r 

FIGURE 1. Leading-order temperature and velocity profiles for a square channel (a  = i) based 
on the normalization c1 = 1 with N = 16. 

in which the trial functions are taken as 

EY 
2a 

f k  = cos(2m-l)-cos(2n-l)~z,  

g, = cos(2m-1)-Cfl(z), XY 
2a 

h - S - sin2nnz. 
k -  -(:a) 

(4.3) 

(4.4) 

Here C, and 8, are the beam functions tabulated by Harris & Reid (1958) and the 
forms (4.2)-(4.4) are chosen to satisfy the boundary conditions (3.7), (3.8) and to 
have the symmetries in y and z associated with the leading eigenmode (Daniels & Ong 
1990). The summations for k = 1, . . . , N  are taken over all integer combinations m, n 
so that for N = 16, for example, all combinations of modes with m, n < 4 are 
included. Substitution of (4.1) into (3.4)-(3.6), multiplication by h,, g k  and f, 
(k = 1, . . . , N )  respectively and integration over the cross-section of the channel 
yields a set of 3N linear algebraic equations for the coefficients ak, b,, ck which form 
the components of the column vector x in a matrix equation Cx = 0. Zeros of the 
determinant of C are located to  obtain the neutral curve R(q) from which the critical 
values R, and qc are found. Even for N = 10 results appear to be accurate to within 
about  YO and a truncation level N = 16 was generally used to obtain solutions to the 
succession of problems formulated in $ 3  and the Appendix. A normalization c1 = 1 
was adopted for the linearized solution V ,  W ,  0. 

Solutions of the system (A 1)-(A 5) are sought in the form 

k-1 k-1 k = l  

and the Galerkin method applied with the same truncation level N to obtain the 
coefficients Lik,gk,Ck from the matrix equation CX = B, where B contains the 
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FIQURE 2. Prandtl-number-independent parts of the second-order temperature and velocity 
profiles associated with nonlinear effects for a square channel (a  = t )  based on the normalization 
c1 = 1 with N = 16. 

contributions from the right-hand sides of (A 1)-(A 3). The determinant of C is zero 
but a solution exists because the terms contributing to  B are consistent with the 
solvability condition (3.15). The solution was rendered unique by specifying C, = 0 
and Gaussian elimination used to  triangularize C, omitting the final (zero) row in the 
reduction process and confirming that (to within the expected tolerance) the 
corresponding term in the reduced form of B was also zero. As a second check the first 
row of C was omitted from the reduction process and, on finding ak, 6k, ck from the 
remaining rows, checked against the value of B,. 

The integrations involved in setting up the elements of C were performed using 
Simpson’s rule, generally with 20 steps in both the y- and x-directions. Tests showed 

17-2 



5 10 P .  G .  Daniels and C .  F .  Ong 

FIGURE 3. Leading-order temperature and velocity profiles for a relatively wide channel (a  = 2) 
based on the normalization c1 = 1 with N = 16. 

that  this generally produced elements accurate to about 5 significant figures. 
Although these elements can be converted into sums and products of one-dimensional 
integrals and thus evaluated most efficiently, it was decided to use direct two- 
dimensional integration in order to minimize the amount of algebraic manipulation 
involved. This is a significant simplification, particularly for calculations (below) 
involving as many as three products of the linear eigenfunctions. Subroutines were 
set up to evaiuate these functions, their partial derivatives and subsequently 
determined functions a t  given values of y and z from stored values of the Galerkin 
coefficients. The same level of accuracy of integration was maintained throughout. 

Solutions of the systems (A 9)-(A 13) are found in the form 

N N -  N 

6 i  = 2 a"kt fk(Y9z) ,  fi = 2 b k i g " k ( y ,  z ) ,  = c E k r h " k ( y ? z ) ,  (4.6) 
k-1 k-1 k-1 

with the trial functions defined by 

(4.7) "Y 
2a 

f ; c  = cos (2m - 1) - sin 2nnz, 

h" - s - cos(2n-l)"Z, 
k -  " l a )  (4.9) 

taking into account boundary conditions and symmetry of the solution. Application 
of the Galerkin method leads to matrix equations O f  = Bi which have unique 
solutions for the coefficients a"ki, 6 k i ,  Fk i .  Solutions of the systems (A 19)-(A 22) are 
found in the form 

0, = 2 d k i f k ( y ?  z ) ,  = c d k , g k ( Y ,  z ) ,  (4.10) 
A N N "  

k-1 k-1 
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FIQURE 4. Prandtl-number-independent parts of the second-order temperature and velocity 
profiles amociated with nonlinear effects for a relatively wide channel (a = 2) based on the 
normalization c1 = 1 with N = 16. 

with the trial functions defined by 

(4.11) aY 
2a f k  = cos (2m - 1) - sin 2na2, 

d k  = '??I (&)sn(z).  (4.12) 

Application of t$e Galerkin method leads to the straightforward calculation of the 
coefficients Likt,dkr from a pair of matrix equations E i  = Bi. Finally the amplitude 
coefficients are evaluated numerically from (A 25)-(A 31) using Simpson's rule. 
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a 9, RC P l  Pz Pa 10-zp4 1 o-zpg 1o-*p, 

0.125 5.524 56668 285.2 267.1 1743 9909 559.8 424.1 
0.25 4.189 8959 133.3 107.8 644.4 1383 94.63 77.48 
0.5 3.384 2946 93.68 59.35 328.3 337.2 25.45 23.97 
1 2.951 1872 86.70 46.33 209.2 163.0 5.140 10.87 
1.5 2.945 1744 86.73 44.88 200.1 149.2 2.941 7.426 
2 2.997 1719 86.87 44.61 211.7 151.1 2.725 5.525 
3 3.058 1710 86.88 44.49 227.8 155.8 1.548 3.683 

TABLE 1. Critical parameters and amplitude coefficients for various aspect ratios a 

100 1 
5 

1 a 2  3 -  - F) 
FIGURE 5. Coefficients of the amplitude equation (4.13) for a channel with rigid boundaries 

based on the normalization O(0,O) = 1. The dashed lines are the asymptotes predicted in $6. 

Figures 1-5 and table 1 contain a summary of the main results obtained for a 
truncation level N = 16 and various aspect ratios in the range < a < 3. Various 
profiles in both the y- and z-directions for a square channel (a = a) and for a relatively 
wide channel, where a = 2, are shown in figures 14 .  Note the weak flow reversal near 
y = * a  in the latter case where a complicated three-dimensional sidewall motion, 
already identified as part of the linear solution by Chana & Daniels (1989), is evident. 
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The profiles displayed in figures 2 and 4 provide the amplitudes of the secondary 
velocity and temperature fields of non-critical wavelength generated in the channel 
for a fluid of infinite Prandtl number. One component consists of a three-dimensional 
motion of half the critical wavelength and the other is a two-dimensional motion 
independent of x consisting of four longitudinal rolls symmetrically placed in the four 
quadrants of the (y,z)-plane. Table 1 contains the major results of the analysis, 
giving both the critical parameter values and the amplitude coefficients for each 
aspect ratio. In order to facilitate a comparison with other results in $$5 and 6 it  is 
convenient to adopt a new normalization 0(0,0) = 1 in (3.3), simply achieved by 
dividing the nonlinear coefficients c ~ , ~ , ,  by the actual value of (0(0,0)}2. In its 
simplest form the amplitude equation for A is then 

(4.13) 

where the coefficients pUr are shown in figure 5. 

5. Stress-free horizontal surfaces 

stress-free planes in which case 
Further analytical progress is possible if the horizontal boundaries are taken to be 

The linear eigensolutions are now 

(0, W )  = ( 0 0 ,  W,) (y) sin w (u, v) = (uo, V,) (y) C O S ~ Z ,  (5.2) 

where Z= z+$ and the critical Rayleigh number and wavenumber are those first 
obtained by Davies-Jones (1970) by solution of the ordinary differential eigenvalue 
problem 

(5.3) 

(5.4) 

A normalization 0,(0) = 1 is assumed, as in the derivation of (4.13). The amplitude 
equation equivalent to (4.13) has been obtained by Chana (1986), the various 
functions arising in the nonlinear analysis of $ 3  having simple dependenci2s on 
z :  0, v, 0 and v have forms similar to those in (5.2) above while 6, @, 0 and 
W are proportional to sin 2nz. The function P is proportional to cos 2nZ as are 0 and 

although these latter functions also contain additive components indepen- 
dent of Z. Figure 6 shows the coefficients of the amplitude equation for values of 
the aspect ratio in the range 

Even further progress can be made in the stress-free case by use of a technique 
< a < 2. 
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I J 

1 2 3 

FIGURE 6. Coefficients of the amplitude equation (4.13) for a channel with stress-free horizontal 
boundaries based on the normalization O,(O) = 1. The dashed lines are the asymptotes predicted 
in $6 and the dots are the finite-roll approximations (5.9). 

introduced by Davies- Jones (1970) known as the ' finite roll ' approximation. This 
consists of setting the cross-channel velocity component v to zero and simply 
ignoring the y-component of the momentum equations. Then 

where /3 = (9+2/a2)i. Results of the linear theory described by Davies-Jones (1970) 
in which 

(5.7) 

are particularly accurate a t  both small and large aspect ratios (Chana 1986); for 
narrow channels the asymptotes R, - x4/16a4, (I, - n/2&2$ given by (5.7) are 
numerically close to the actual asymptotes for free or rigid horizontal boundaries 
(R, - n4/16a4, q, - (22/3/a)i as a+O) while for wide channels the leading 
approximations to R, and q, coincide with those of the actual stress-free asymptotes 

It 
R, - Yx4+ 193.36~-~,  q, - -- 0.71933~-*, a+ 00, 

d2 
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obtained by Chana & Daniels (1989). Extension of the finite-roll approximation to 
the nonlinear case leads to the following results for the coefficients of the amplitude 
equation (4.13) : 

I 
tanh 2na} J 

(1 + 4 a 2 )  (1 +6a2) - 
2rca " = 256(b- 1) (1 + 4 ~ ~ ) ~  

(Chana 1986). It seems reasonable to expect qualitative agreement with both the 
rigid and stress-free results as a+O and indeed the behaviours yl = y2 - rc2/4a2, 
y 3  - 2rc2/a2, p4 - n6(9+2rc2)/384a4 associated with (5.9) are consistent with the 
predictions of the Galerkin scheme a t  small aspect ratios. These results combined 
with those of the linear study by Chana & Daniels (1989) imply that in the rigid case 
(0,  u, v, w) = O((R -Re)+ (a2, at, a ,  1 ) )  as a + 0. At large aspect ratios the behaviours 
yl = p2 - 9x2/2, y, - 18n2, y4 - 357c6/43 as a +  00 are in very good agreement with 
the exact stress-free calculations (see figure 6) although the numerical values of y3  
and y4 would not be expected to tally precisely because the y-dependence assumed 
in (5.6) does not coincide with the actual y-variation of the linear solution at large 
aspect ratios (see below). 

6. Asymptotic theory for wide channels u+ co 
At large aspect ratios the present theory can be reconciled with the familiar two- 

dimensional amplitude equation describing roll patterns in an infinite horizontal 
layer, providing an important check on the results for both rigid and stress-free 
boundaries. For rigid horizontal boundaries this two-dimensional amplitude equation 
is 

where R = R, + a-4& x = a2r?, y = a?, t = a4?, (6.2) 

0 - a-2{eiqozA"(r?, F, 7) + c.c.)g(z), (6.3) 

and R, = 1707.76 and q, = 3.117 are the critical Rayleigh number and wavenumber 
for the infinite layer. For convenience the solution here is expressed in terms of the 
large parameter a instead of the conventional small parameter R-R,.  A 
normalization g(0) = 1 is assumed and the coefficients 

,iil = 86.91, ,ii2 = 44.47, ,ii3 = 252.2, ji4 = 22281, j i5 = - 150.37, ji, = 265.05, 
(6.4) 

may be inferred from previous work by Schluter, Lortz & Busse (1965), Kelly & Pal 
(1978), Wesfreid et al. (1978), Cross (1980) and Chana & Daniels (1989). The 
boundary conditions for (6.1) a t  the sidewalls of the channel are 

a t  8=*1, 
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following the arguments of Brown & Stewartson (1977), as extended to the rigid case 
by Chana & Daniels (1989). 

The coefficients (6.4) cannot be compared directly with the forms of those 
occurring in the one-dimensional amplitude equation (4.13) as a --f co because in 
(4.13) the solution is expanded about the critical Rayleigh number R,(a) rather than 
R,. This is equivalent in (6.2) and (6.3) to setting 

s"= ,Z3q,26+A, (6.6) 

with A = 0 to correspond to R = R,(a) and 

A = A ~ T ~  + AA,+A&I,+. . . , A +o. 
At order At,  from (6.1), 

A, = A@, 7) F (  p) e-iY*/Qo, 

where and 7 are appropriate length and time scales defined by 3 = A-iX,  .? = A - ~ T  
and 

{ ( : $+~) ' -6 }  F = 0 ; F = F' = 0 (F = f 1).  

The required solution is 

F = Zcosw, P+ (1  - 1 )  coshw- P, (6.10) 

where w* = l/2(d+ y); and 1 = (1  - cos o+ sechw-)-' (6.11) 

to be consistent with the normalization F = 1 a t  p = 0. The values of 6 and y needed 
in (6.6) and (6.8) are the solutions of the characteristic equation 

w- tanh w- + w+ tan w+ = 0 

for which 6 is an absolute minimum. These are 6 = 6, = 5.3708 and y = yc = 1.5980 
(see Chana & Daniels 1989) and imply that 

Pc - q o - -  a+cO, R, W E , + -  6, F 3  

qi a4 ' Po a2 ' 
(6.12) 

giving the corrections to the critical Rayleigh number and wavenumber due to the 
presence of the distant sidewalls. 

A t  order A ,  (6.1) gives 

where B, is arbitrary at this stage and 

{ ( ~ $ + y ) p - s } G  =-(:A -+2y ) F ;  G = G = O  ( P = +  

The solution for G exists when 6 = 6, and y = yc and can be expressed 
of generality, as G = aF/ay l y e ,  being given from (6.10) as 

(6.13) 

). (6.14) 

without loss 

G = p 1 ( c o s w + 8 - c o s h w - ~ ) + ~ , ~ s i n w + ~ ~ + ~ , P s i n h w _ P ,  (6.15) 

where = aZ/ay, pz = - l / w + ,  p3 = (Z- l ) / w -  and all quantities are evaluated at  
y = y,. At this point w+ = 2.7984, w- = 1.1996, 1 = 0.65779; = -0.18516, 
/3, = -0.23506 and p3 = -0.28526. Profiles of F and G are shown in figure 7. 
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L -0.03 
FIGURE 7 .  Profiles of the functions F and G at the critical point 6 = 4, y = y,. 

At order A t ,  (6.1) gives an equation for A", which has a solution satisfying A", = 
aA",/aE = 0 a t  E = k 1 only if the solvability condition 

is satisfied, where 

F 2 d a ,  I2  = I1_ ,Frg+2yC)dE,  I, = 1 1 F 4 d P  (6.17) 

and y = yc. From (6.10) and (6.15) these integrals can be evaluated as I ,  = 0.76741, 
1, = -0.03598 and I3 = 0.56097 and it is equation (6.16) that should be compared 
with the limiting form of (4.13) as a + co , the parameter d/a4  corresponding to E in 
(3.1). The integral terms in (6.16) are the ones which prevent a simple comparison 
between the coefficients of the y-independent terms in the two-dimensional 
amplitude equation (6.1) and those of (4.13) as a+ co. Thus the F-dependence of the 
solution in the channel as a+ 00 leads to modified values of the coefficients of both 
the spatial derivative and nonlinear terms in (6.1) given by 

(6.18) 
109.92 193.75 

16288--+- 
U u2 . 

These values, together with those of p1 and p2, the coefficients of the time derivative 
which remain unmodified, are shown in figure 5 and compare well with the results of 
the Galerkin scheme for large a. Note that for a truly E-independent solution of (6.1) 
where the sidewall boundary conditions are ignored, F = 1, yc = 8, = 0 and C = 0 
giving I ,  = I3 = 2 and I ,  = 0 in (6.17) and describing a bifurcation to two-dimensional 
rolls at R = R,. 

A similar analysis is possible for the case of stress-free horizontal boundaries and 
again satisfactory agreement is obtained. Here the two-dimensional amplitude 
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equation in the infinite layer is more complicated than that for the rigid problem 
(Siggia & Zippelius 1981) owing to the importance of a vertical vorticity a-552 with 
52 generated by a term 

(6.19) 

where * denotes complex conjugate. Here the notation is as in (6.1)-(6.3) but now 
R, = 27n4/4 and q, = x / d 2 .  The vorticity results in an additional contribution 82 
to the right-hand side of (6.1), 8,f)  being the leading term of a non-oscilla- 
tory flow in the x-direction generated by a. However, substitution of the leading 
term of (6.7) into (6.19) shows that 52 = o(d) in which case B = o(d) and BA" = o(dt). 
The equation (6.16) is therefore unaffected by this additional contribution, a measure 
of the restriction imposed by the sidewalls of the channel. At finite aspect ratios the 
effect appears as a weak non-oscillatory flow u of order e: along the channel and thus 
influences both the amplitude equation for B in (3.10) and the wavelength selection 
process (Daniels & Chana 1987). For the stress-free case 

PI = p2 = g ~ 2 ,  b3 = 187~2, p4 = En', b5 = k6 = 0 (6.20) 

(Newell & Whitehead 1969) but otherwise the results (6.16), (6.17) still apply, with 

j 3 (  1 +t) = 169.32, 3557.8+-+-. 0 0  
CT CT2 

(6.21) 

These values, together with those of p l  and puz are shown in figure 6. 

7. Discussion 
Solutions have been obtained for the onset of three-dimensional convection in an 

infinite rigid channel with conducting sidewalls. The dependence of the solution on 
both the direction along the channel and the Prandtl number is determined 
analytically. The main results are contained within an amplitude equation whose 
coefficients have been calculated for all Prandtl numbers and a range of aspect ratios 
between a and 6. Additional results for stress-free horizontal surfaces and asymptotic 
results for large aspect ratios have confirmed the general trend of the Galerkin 
calculations. The form of the amplitude equation is similar to that describing two- 
dimensional roll patterns in an infinite layer (Newell & Whitehead 1969; Daniels 
1977) so that general properties of the solution are modified only by changes of scale. 
In particular, the coefficients p l  and p2 provide a measure of the timescale 
t - (R-R,)-l (pl + g-l,u2) on which small disturbances develop near the critical 
Rayleigh number, while p3 determines the waveband of nonlinear stationary states 
/q-qcl c (R-R,)fp;i as R-tR,. Those solutions for which Iq-qJ < (R-R,)i(3p3)-i 
are stable to the sideband instability discussed by Eckhaus (1965). Other oblique 
modes of instability discussed by Newell & Whitehead (1969) within the context of 
the two-dimensional amplitude equation are not relevant near R, when a is finite. 
The maximum amplitude of the motion corresponds to the solution 
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when q = qc and the perturbation temperature field and vertical velocity attain 
maximum values 

on the centre of the channel. 
Unfortunately results of full numerical simulations by Oertel (1980), largely 

consistent with experiments by Dubois & Berge (1978), are only available for 
comparison a t  relatively large aspect rakios. For air (g = 0.71) Oertel found that 
8,,,xO.12 at R x  1815 and that ~ f n , , x 9  and 18 at Rx33000 and 5000 
respectively. Using the fact that for a = 2, W(O,O)/O(O,O) x 22 (see figure 3), the 
leading approximations (7.1) give corresponding values of 0.15, 12 and 20. In  fact it 
is not surprising that infinite-layer theory based on (6.1) is more accurate for such a 
large aspect ratio, giving corresponding results 

Omax-2(R-Ro)f ,L4+A++ x0.14 and w,,x 10 and 16. (3 
The reason for this is that the expansion (3.2) is only valid a t  large aspect ratios a 
when R-R, 4 a-4. Thus as a increases, the range of validity of the one-dimensional 
amplitude equation (4.13) is restricted to a diminishing neighbourhood of the critical 
Rayleigh number R,. On the extended range R-R, = O ( U - ~ )  the full amplitude 
equation (6.1) comes into operation and the linear profile F ( F )  is replaced by a 
uniform profile as (R - R,) a4 + co . Boundary layers of thickness y + a = O( (R - Ro)f) 
then provide adjustment to the sidewall boundary conditions (6.5). The failure of 
(4.13) is equivalent to the requirement that d < 1 in (6.6) but, formally, the 
breakdown of the basic expansion (3.2) follows from the fact that 0 = 0(1) and 
6 = O(a2) as a + co, so that the expansion fails when ei - aW2. This can be seen from 
(A 6) in combination with (6.12), or by estimating the effect of the inhomogeneous 
terms in (A 1)-(A 3) as a+ 00. Note that in (A 28) the coefficient c4 remains O(a) as 
a --f co because the leading contributions of O(a3) coincide with the leading terms on 
the left-hand side of the solvability condition (3.15). 

The present results may be adapted to the case of a long box 1x1 < L ,  say, with 
L 9 1, in a straightforward manner. Previous theories (Daniels 1977, 1978) have 
developed an understanding of how endwalls at x = + L  affect the onset of two- 
dimensional rolls parallel to those walls, the F-independent form of (6.1) providing 
a basis for the theory. The main effect of the presence of the endwalls is simply that 
the amplitude function must vanish a t  x=+L,  and this identifies the onset of 
motion to within an accuracy of O(L-*) in the Rayleigh number. It is expected that 
the same remains true in the case of the channel except that the appropriate 
amplitude equation is now (4.13). The relevant solution is the leading mode of the 
steady linearized version of (4.13) for which A = 0 a t  X = k&L so that the onset of 
stationary convection occurs in a long box when 

R - R,+-P~L-~,  7c2 L 4 1, 
4 

with both R, and p3 dependent on the aspect ratio a. 
The theory for two-dimensional rolls with stress-free horizontal surfaces has 

actually been extended to include an important class of nonlinear solutions which 



520 P. G. Daniels and C. F .  Ong 

arises when R-R, = O(L-') (Cross et al. 1983; Daniels 1981). The corresponding 
waveband Iq-qol = O(L-l)  allows solution states with different numbers of rolls and 
transitions between these states can be identified as the value of the Rayleigh 
number changes (Daniels 1984). Motions in long rigid boxes exhibit such transitions 
at  low Prandtl numbers (Buhler et al. 1979) and it  is hoped that eventually the 
present theory can be extended to provide a quantitative comparison. Daniels & 
Chana (1987) have indicated how this might be done but the main requirements, 
which are the coefficients of the higher-order amplitude equation for B in (3.10) and 
certain constants associated with the solution near the endwalls a t  x = +L, present 
a formidable task. I n  principle, however, the Galerkin method described here could 
be used to carry out the necessary calculations. Experimental results for relatively 
small values of a and very large values of L would be most amenable to comparison. 
The present method has the advantage that the structure of the entire family of 
stationary states can be determined near the critical Rayleigh number (Daniels & 
Chana 1987) in contrast to the computationally expensive requirement of tracing 
even a single solution branch by a fully numerical three-dimensional treatment. It is 
expected that a similar technique to that used here would be useful for other weakly 
nonlinear stability problems provided the system is sufficiently extended in one 
direction. 

This work was supported by a research grant from the Science and Engineering 
Research Council. 

Appendix 
The system for 0, and w obtained from (2.12)-(2.16) is 

and it is seen from (3.4)-(3.8) that  a solution is 

where 8, V ,  W are here regarded as the solutions of (3.4)-(3.8) at  general points on 
the neutral stability curve R = R(q), the condition dR/dq = 0 being satisfied a t  the 
critical point. Also 

(A 7 )  
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and - 
2U+P+2qc U )  = -- . : I*. p=L@ - 

qc 

The solutions (A 6)-(A 8) may contain in addition an arbitrary multiple of the 
corresponding basic linear eigensolution although this may be considered part of the 
solution associated with B.  

From (2.12)-(2.16), for i = 1 ,2  

628, + iq = f i 3 ,  

where v2 = a2/i3y2 + a2/az2 -4qt, 

jI1 = f12  = f 2 3  = 0, and 
ao ao 

f I3  = -qc uo+ v-+ w--, 
ay a2 

2 2 1  = 4q: qc uv- v-- w- +2q,- v-+ w--ac u2 , 

a au au 
f 2 2  = 4q: qc uw-v-- w- +2q,- v-+ w--qc u2 ( aw ay '7 a2 az( ay a2 

ay '7 a2 t y (  aZ 1 
) 

( 

Also, from (2.1) 

and from (2.2) 
- 1  PI =-6201, . 

2% 

From (3.12), (3.13) and (2.5), for i = 1,2  

where t2 = a2/ay2 + a2/ax2, 
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ill = f,, = 0, and 

f 2 , = 2 -  q , u v + v - + w -  -2- q,uw+v-+W- 
a2 a (  av a Y  g) iy( aw ay "3 a2 

The amplitude coefficients arising in (3.16) are 
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